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Predictability time from the seismic signal in an earthquake 
model 

Guglielmo Lacorata aid Giovanni Paladin 
Dipmimento di Fisicq U&ersia dell' Aquila, I67100 Coppito, L' Aquilq l a y  

Received 22 April 1993 

Abstract We compute the maximum Lyapunov exponent 1. of an emhquake model which 
exhibits deterministic chaos and we discuss its relation with the predictability time of the system 
A method is proposed to estimate h by the calculation of the entropy of Markov processes which 
mimic (i) a Poincad map of the model and (ii) a random map related to the seismic signal. The 
latter map can be obtained using experimental records generated by lowdimensional chaotic 
systems where Poincar6 maps are not feasible. 

Phenomena related to deformations and fractures of the earth crust are very complex. From 
a theoretical point of view, it is necessary to find a model as simple as possible which at 
the same time exhibits some qualitative feature of the earthquake dynamics. One of the first 
attempts was due to Burridge and Knopoff (1967). They have introduced a stick-slip model 
of coupled oscillators which mimics the interaction of two faults. In practice one considers 
blocks on a rough support connected to each other by springs. They are also connected by 
other springs to a driver that pulls the chain of the blocks at a very low constant velocity. 
The blocks stick until the pulling spring force overwhelms the static friction and then'one 
or more blocks slide. After sliding (a sort of seismic event), the blocks stick again in new 
equilibrium positions until the next event. To simulate the earthquake dynamics, Carlson 
and Langer (1989) studied a chain with a large number of homogeneous blocks (as many as 
200) which interact by equal springs connecting nearest neighbours. The dynamic friction 
is chosen to depend in a nonlinear way on the velocity; it decreases with increasing block 
speed. This model has been shown to exhibit power laws (Gutenberg and Richter 1956t, 
Omori 1894) which are a common mark of earthquake statistics. Moreover, it has been 
argued that the appearance of power laws in this deterniinistic system is connected to .the 
strong intermittency~in the chaotic behaviour due to the cooperative effect of many degrees 
of freedom (Crisanti et al 1992). 

On the other hand, a chaotic evolution (without power laws and with weak intermittency) 
also appears in a model with only ~ two blocks (Huang and Turcotte 1990) (see also 
Narkounskaia et d 1992), where the friction acting on  one^ block is larger than that on 
the second by a factor p.  Although the model cannot describe the~dynamics of the elastic 
deformations in a single homogeneous fault, it can be regarded as a good description of the 
dynamics of two coupled large segments of a fault. Huang and Turcotte used it to analyse 
the earthquake records at Wallace Creek and Pallet Creek (two sites near the San Andreas 
fault) as well as in the subduction zone of Nankai in Japan. 

t The Cutenberg-Richter law is a power law for Ihe seismic moment M. However, one usually considers the 
probability of occurrence ofan earthquake of magnitude m - In M, so that the law is formulated as P(m)  = AeMbm 
where b % 1. 

0305470/93/143463+09$0750 @ 1993 IOP Publishing Ltd 3463 



3464 G Lncorata and G Paladin 

This paper discusses the importance of measuring the degree of chaos in such a system, 
since it allows one to relate the spatial inhomogeneity of an active zone (the factor /3) to 
the degree of predictability of the seismic events originated by it. Our main result is a 
method which can be directly applied to signals of the seismic moment without reference 
to the evolution equations, which in general cases are very difficult to reconstruct with 
experimental signals. 

For this purpose, we numerically compute the maximum Lyapunov exponent A, which 
gives the mean rate of divergence of two initially close trajectories. In practice, even when 
the deterministic evolution equations &e exactly known, the information obtained by a 
measure of the state of the system (here positions and speeds of the two blocks) is quickly 
lost in the chaotic regime. Indeed, when the measure precision is E, after a time f the state 
of the system can be predicted with an incertitude of order Eexp(At). It follows that the 
deterministic nature of the evolution equations are useful for a forecasting only up to a 
predictability time 

Tp = A-’ In(A/<) (1) 

where A is the minimum precision which can be accepted to individuate at least some 
qualitative feature of the system. A sensible choice of A is a subjective matter, since 
it depends on the type of information requested. However, the crucial point is that the 
predictability time depends on the measure precision E and on the toleration parameter A 
in an extremely weak way which can be safely ignored. For all purposes, the logarithm 
in (1) can be considered a constant of order unity, and the predictability time identified 
with the inverse Lyapunov exponent. The main difficulty stems from our ignorance of the 
evolution equations ruling the dynamics even of simple fault systems as those described 
by two block models. One needs a method to estimate the degree of chaos and thus the 
predictability time by an analysis of physical quantities such as the energy released in a 
seismic event. We have thus studied the, simplest realistic model as a first step toward this 
goal. Our procedure is the following: 

(i) We compute the Lyapunov exponent of the Huang-Turcotte model. 
(ii) We find appropriate random processes which mimic the dynamics of a , one  

dimensional Poincar.4 map of the flow. The entropy of a two-step Markov process is a 
very precise estimate of the Lyapunov exponent. 

(iii) We use the model to generate an ‘experimental’ seismic signal. Its time record is 
used to construct a sort of random mapping which can be described in terms of a Markov 
process. As there is no randomness in the starting model, this mapping is not the most 
accurate way to investigate the dynamical process of the model. However, in the analysis 
of time records, it could be much easier, to obtain a random mapping related to the seismic 
signal rather than first return deterministic maps. The Huang-Turcotte model is an ideal 
playground to test the efficiency of random maps. 

Let us briefly define the stick-slip model. The. two blocks of equal masses M are 
connected by a spring with Hook coefficient k, and they are linked to the driver by springs 
with equal coefficient k .  The driver moves at constant speed ud and we choose the reference 
frame where the driver is at rest (a stuck block is thus characterized by ~y = ud). The 
evolution equations are 
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where y ~ ,  yz are the displacement from the equilibrium position, and F I ,  FZ are the friction 
forces. A block can be stuck since the static friction exactly balances the harmonic forces 
up to a threshold value. When the spring forces acting on the first (second) block are 
larger than FO ~(,!?Fo), the block slips and is slowed down by a~ dynamical friction with a 
velocity weakening form. It is convenient to define adimensional variables by introducing 
a reference speed U,C (an appropriate choice is the average slip speed) so that E = yik/Fo, 
a = k , / k ,  ,!? = F?/Fl, y = F o / ( u ~ ~ ) ,  r = t m .  We consider a dynamical friction 
which is slightly modified with respect to the Huang-Turcotte form: 

F(Y)  = Fo/( l  + V I ?  - V I )  (3) 

where U = Ud/?Jf is the drift speed vd in adimensional units. The equations during a slip 
thus become 

Y , + Y 1 + a ( Y 1 - Y 2 ) =  l / ( l+yIY1-u[)  
(4) 

Y2+Yz+a(Yz-Y1) = p / ( 1 + Y I Y z - u [ )  .~ 

while when one of the two blocks sticks, one has in our reference frame 

(5a) 
.~ Y,=O Y 1 = u  ~ 

or 

P 2 = 0  Y 2 = u  (56) 

respectively if ly, + a(Yl  - Yz)l < 1, or [Y, + or(Y2 - Y,)l < ,!?. The quantity T , ~ =  u-l 
is the natural (adimensional) time unit of the system. Realistic U values are of order 
or less, that is the existing ratio between the typical duration of a seismic event and the 
average recurrence time (Carlson and Langer 1989). However, the main qualitative results 
are independent of U and we have integrated the equation with U = 0.01. Following Huang 
and Turcotte (1990), we have fixed a = 1.2 and y = 3;and varied the friction ratio ,!?. The 
evolution has been studied by the Poincart~map given by the intersection of the orbit with 
the plane ( Y z  - Y l ,  Yz - Y1). At 6 = 1, the Poincart map has a fixed point which, however, 
depends on the particular initial condition chosen. At increasing ,!?, one observes a transition 
to chaotic behaviour via period-doubling bifurcations, as shown in figure 1. In other terms, 
for p - 1 small enough, the behaviour is periodic. The critical ,!? for the transition to chaos 
depends on the form of the friction law but it is not sensitive to the initial conditions. In 
the chaotic regime, the Lyapunov exponent Am(,!?) of the Poincar6 map is pdsitive and is 
related to the maximum Lyapunov exponent A of the original flow by the relation 

A = Am/(s) , (6) 

where ( 5 )  is the average time interval between two successive intersections of the flow with 
the Poincart section. We have estimated the rate ,of divergence of nearby trajectory by :a 
numerical integration of (4). In figure 2, the resulting Lyapunov exponent A is shown as 
function of ,!?. Note that the Lyapunov exponent A has the dimension of an inverse of a 
time. In this paper we use the natural time unit which corresponds to U-' integration steps. 

One sees an alternation of chaotic and regular windows, while the envelope decreases 
nearly exponentially for large,p. This indicates that, for strongly asymmetric frictions, the 
system becomes more and more regular since the activity tends to concentrate on the less 



3466 G Lacorata and G Paladin 

0.11200 

0.11175 

0.11150 

, , . 1 , , , , , I , , , , , , , , , , , r 

- - 

- - 
.,!!: 

..::Ill ! i :  - 

Figure 1. Period-doubling transition to chaos in the slip-stick model with d = 1.2, y = 3 and 
Y = 0.01: asymptotic values of Y2 - Yt at varying B .  
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Figure 2. Maximum Lyapunov exponent A in natural units as a function of fl (the nt io  between 
the frictions of the two blocks) with a = 1.2, y = 3 and Y = 0.01. A is estimated by the rate 
of exponential divergence of nearby trajectories obtained by a numerical integralion of 4. 

constrained block. In order to study the predictability problem, we have analysed in some 
detail the case p = 2. The Poincare map in figure 3 is the set of the intersections of the 
representative point in the phase space (Y,, Yz, PI, Yz), with the plane (Yz - PI, Y, - 5). 
Plotting Yz - YI respectively before and after a slip we have obtained the one-dimensional 
map x,+l = f(xn) with x E I, 1 c R, n E N, where f : I -+ 1. The numerical points can 
be fitted by the polynomial forms fK(x)~ = Cl aixi defined on appropriate subintervals IK 
of I. The Lyapunov exponent is easily obtained by the tangent map 

- - 
1 . . . . 1 , . . . 1 , . . . 1 , . . . 1 . ;  

zn+l = - zn : lL" 
(7) 

where z E R is the tangent vector which should be regarded as an infinitesimal perturbation 
on the map trajectory x,. One thus has 
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F i g m  3. Poincad map Yz(n + 1) - Y,(n + 1) against Yz(n) - Yl(n) of the Row generated by 
equations (4) where the parameters are f l  = 2, U = 1.1 and y = 3. The intenrals of the partition 
are indicated by vertical bars on the x axis (note that the-second interval from the left does not 
belong to the invariant set of the map and is not a partition element). 

In DUI case, after 105 iterations of the tangent map 0, one gets 

Am ='0.350+ 0.005. 

The average time delay between two successive intersections of the flow with the Paincad 
map is in natural time units 

(t) = 0.640 i 0.005 

so that the maximum Lyapunov exponent for the original flow is 

A = 0.55 zk 0.01. 

We have also computed A directly from the numerical integration of the original differential 
equations, by considering the'the rate of divergence of two initially nearby orbits. After 
integrating for 1000 natural time units, we find 

A = 0.55 i 0.05 

in good agreement with the more precise estimate obtained via (8). We have also computed 
the intermittency degree (Paladin and Vulpiani 1987). The system exhibits the standard 
type of behaviour of low-dimensional chaotic systems. There are small fluctuations in the 
effectiveLyapunov exponents y r ( n )  = (I/r) In(lzn+zl/lznl) computed at finite timer around 
the mean value A, and the dishbution can be well approximated by a Gaussian for small 
Iy -A/, though it is characterized by a entropy function S ( y )  which has no universal form 
and depends on the particular dynamical system considered (see for a discussion Paladin 
and Vulpiani (1987)). It is worth stressing that this is not the case for the Carlson and 
Langer model when there are N 2 100~blocks. In fact, for N 100, the variance of the 
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y distribution does not tend to a finite value but diverges as P for a time delay r + CO, 
indicating that S(y)  does not exist and that there is no characteristic time scale because 
the intermittency is too strong. This is conjectured to be the very origin of the Gutenberg- 
Richter law in many-block models (Crisanti et a1 1992). On the other hand, the Huang and 
Turcotte model has negligible intermittency. It follows that there are small fluctuations of 
the predictability time around its mean value, which can can be estimated as 

G Lacorata and G Paladin 

Tp EA-' = 1.8f0.2 I 

in natural time units. This means that knowledge of the initial state of the system allows 
one to give sensible predictions only for times smaller than twice the typical time scale, 
proportional to the inverse of the driving speed U. This time scale can be shown (Carlson 
and Langer 1989) to be of the order of the 'loading' time, that is the average time interval 
between two large seismic events. 

In view of  applications to signal analysis, it is interesting to estimate the Lyapunov 
exponent of the Poincare map in terms of appropriate random processes (Crisanti et a1 
1989). We construct a partition of the invariant set under the map dynamics into M intervals. 
Successive iterations of the map produce a time sequence of intervals visited by the system, 
and thus a symbolic dynamics of M symbols. In a chaotic regime, the statistical properties 
of the deterministic symbolic dynamics and of an appropriate random sequence of symbols 
should be the same. As a first approximation we can describe the dynamics by a first-order 
Markov chain. Therefore, we estimate 

(i) the stationary probability vector p whose elements pi are given by the visit frequence 
of the interval i; and 

(ii) the M x M transition matrix W,j by a numerical computation of the probability that 
the system jumps from the interval i to the interval j in one time step. 

It is worth recalling that p is the left eigenvector of the transition matrix corresponding 
to the largest eigenvalue 1. The entropy of the Markov chain is defined as 

This entropy is expected to tend to the Kolmogorov-Sinai K entropy @ckmann and Ruelle 
1985) of the dynamical system when the number of the partition elements M + CO. In 
general, K is given by the sum of the positive Lyapunov exponent and for a onedimensional 
expanding map, it coincides with the maximum Lyapunov exponent. Choosing a partition 
of M = 5 intervals (see figure 3), we have found Sj = 0.54 by a diagonalization of the 
transition matrix Wi,j which has been estimated by a numerical iteration of the polynomial 
form approximating the one-dimensional map of figure 3. In the appendix, we give the 
results for different partitions of the maps. Let us remark that increasing the number of 
partition elements does not substantially improve the estimate obtained with M = 5. In 
practice, it is more efficient to consider higher-order Markov process at fixed M. In this 
case, the transition operator is a tensor. For instance we have considered (at M = 5) a 
second-order Markov chain and the corresponding tensor Q j ~ j  given by the probability that 
in two iterations the system jumps from the interval i to 1 and then from I to j .  The entropy 
of this process is 
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where pi is the stationary probability and Wij is the one-step transition matrix, previously 
defined. The numerical calculation gives S2 = 0.36 which is an accurate estimate of the 
Lyapunov exponent Am ~= 0.350 given by the integration of the tangent map (7): A moment 
of reflection shows that increasing the correlation of the random process (i.e. the order n 
of the Markov chain) should lower the corresponding entropy value, i.e. should increase 
the predictability time (estimated by SF'). Once fixed the partition elements, one can 
determine their frequency visit and the transition probabilities by a numerical iteration of 
the deterministic mapping. One can thus obtain a sequence of Markov processes of order 
n, all of them approximating the same chaotic dynamics. It is evident that the Bernoulli 
process (n = 0) is more unpredictable than a first-order Markov process, and so on. It 
follows that S;' should be a non-decreasing function of n. 

Our result shows that it is possible to estimate the Lyapunov exponent in a simple way 
without knowing either the differential equations which rule the system or the optimal 
partitions (the Markov partition or a generating partition (Eckmann and Ruelle1985)). 
However, our procedure is nbt feasible in generic situations of seismic '.interest since it 
is hard to obtain a well shaped one-dimensional map from a time signal of natural physical 
quantities, such as the energy released in an earthquake. In BurridgeKnopoff models, the 
seismic moment (proportional to the released energy) is the sum of the sliding runs during 
a single seismic event. that is 

where Y,(n) is the position of the ith block before the nth slip. As shown in figure 4, the 
map Ma+] against~M,, of the seismicmoment computed at subsequent events is multi-valued 
on the definition domain. This is a general feature which must be taken into account when 
analysing realistic signals generated from dynamical systems exhibiting low-dimensional 
chaos. As for the previous map, it is simple to find pdynomial forms which fit the numerical 
points. To study the map, we have introduced a partition of M = 9 elements, as shown 
in figure 4. Since some points have more than one image, the simplest description of the 
dynamics is through a random map where a weight is assigned to each possible option. To 
simplify the numerical simulation, we have assumed that these weights are uniform on an 
element of the partition. Although the random assumption is only a hypothesis, using the 
previous rough approximations, we can easily compute the entropies of the corresponding 
one-step and two-step Markov processes: 

SI = S2 = 0.6 

with an error'of one per cent. We expect that these entropies should be larger than the 
Kolmogorov-Sinai entropy of the deterministic map. In this case, the predictability time is 
underestimated by a factor two. The fact is probably due to the lack of precision  in defining 
the random mapping. Assigning @e respective weights of different branches of the map 
as a function of M,,. and not of the partition interval, might improve the result. However, 
there is h good qualitative agreement between the Lyapunov exponent and the entropy of a 

In conclusion, the predictability of two-block models with asymmetric friction has severe 
limitations in the presence of chaotic behaviour. We have shown that the order of magnitude 
of the predictability time can be estimated by appropriate random mappings extracted by 
a time signal, without knowing the underlying deterministic evolution equation. Strictly 

. .  Markov process. . ,  
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Figure 4. Multi-valued map of the seismic momem: against M,. The system parameters 
are the same as in figure 2. The intervals of the partition m indicated by venical ban on the 
x axis. 

speaking, our estimate is an upper bound of the inverse Lyapunov exponent but we think 
that the entropy of the Markov process associated with the random map is a much more 
sensible definition of the inverse predictability time. In real situations, the seismic moment 
is the only quantity accessible to experimental measurements and no first return map can 
be obtained. 

Random maps such as the map of figure 4 could be interesting for other phenomena of 
geophysical interest which exhibit low-dimensional deterministic chaos, since our method 
works even when the evolution equations ruling the system are unknown. This is the 
most important result of this paper which, in principle, can be applied to different types of 
experimental signal. 
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Appendix 

In this appendix we give the result for the entropies SI and S, of the Markov processes 
associated with different partitions of the invariant set of the onedimensional map shown 
in figure 3. We have considered partitions with 5, 8 and 13 elements. 

The simplest partition with M = 5 elements can be found in figure 3. 
The partition with M = 8 elements is obtained by individuating discontinuities, maxima 

and minima of the map. It follows that the third interval of the partition of figure 3 is split 
into the three intervals [0.184,0.24], [0.24,0.285], [O.ZSS, 0.3701. 

The M = 13 elements of the last partition are given by the images of the first intervals of 
the partition in figure 3 under subsequent iterations of the,mapping. This procedure does not 
cover the sub-interval [0.370,0.3901 of the invariant set The first interval is [-OS, -0.371, 
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and the interval [-0.18,0.8] is divided into 12 elements &th bounds in the points -0.18, 
-0.08, -0.105. 0.184, 0 2 ,  0.285, 0.370, 0.390, 0.470, 0.52638, 0.64, 0.7150189, 0.8. 

The entropy values are respectively 

St = 0.54 Sz = 0.36 for M = 5 

SI = 0.72 ~ S, = 0.39 for M = 8 

SI = 0.48 S2 = 0.38 for M = 13. 

The Kolmogorov-Sinai entropy of the natural probability measure (Eckmann and Ruelle 
1985) has been estimated to be K = 0.36 by a numerical calculation of the Lyapunov 
exponent. 
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